Prediksi Kemampuan Pembayaran Klien Home Credit Menggunakan Model Random Forest, Decision Tree, Dan Logistic Regression

Authors

  • Nurul Chairunnisa Universitas Islam 45

DOI:

https://doi.org/10.59061/jentik.v1i3.383

Keywords:

Home Credit, Random Forest, Decision Tree, Logistic Regression

Abstract

Home Credit is a global financial company that provides consumer loan services. The purpose of this research is to predict the ability of clients to pay in order to make it easier for companies to provide loans or not. Not being careful in analyzing lending will cause credit risk. So to reduce these risks, the company needs an analysis to predict the client's repayment ability to determine whether to pay or not as a reference for the company in providing credit loans. By using the previous member criteria data, predictions of the smoothness of payments can be made using data mining. The data mining techniques used are Random Forest Classifier, Decision Tree Classifier, and Logistic Regression Classifier. The models used are Random Forest, Decision Tree, Logistic Regression, which determine the likelihood or opportunity based on the data of previous members, and the results. The criteria used consist of the ten best features selected based on the results of best feature importance. The evaluation results of the random forest model are able to predict the ability to pay home credit clients with a high level of test accuracy score of 0.9967, ROC value of 0.9967, recall value of 1.00 compared to the other two models.

 

References

Azhari, M., Situmorang, Z., & Rosnelly, R. (2021). Perbandingan Akurasi, Recall, dan Presisi Klasifikasi pada Algoritma C4.5, Random Forest, SVM dan Naive Bayes. Jurnal Media Informatika Budidarma, 5(2), 640–651. https://doi.org/10.30865/mib.v5i2.2937

Dqlab. (2023). 4 Platform Kekinian untuk Portofolio Data Analyst. Dqlab. https://dqlab.id/4-platform-kekinian-untuk-portofolio-data-analyst#:~:text=Kaggle adalah salah satu platform,menyelenggarakan kompetisi di ilmu data

Handayani, N., Wahyono, H., Trianto, J., & Permana, D. S. (2021). Prediksi Tingkat Risiko Kredit dengan Data Mining Menggunakan Algoritma Decision Tree C.45. JURIKOM (Jurnal Riset Komputer), 8(6), 198–204. https://doi.org/10.30865/jurikom.v8i6.3643

Kasidi, & Christanto, J. (2022). Perancangan Model untuk Prediksi Potensi Churn pada Debitur KPR dengan Regresi Logistik. Institut Teknilogi Sepuluh November. https://repository.its.ac.id/92487/

Marvin, K. (2018). Klasifikasi Potensi Pembayaran Kredit Customer Dengan Metode C4. 5 Pada Pt. Autochem Industry. 34–56, 1–191. http://repositori.buddhidharma.ac.id/830/%0Ahttp://repositori.buddhidharma.ac.id/830/1/Marvin Kristianto - 20141000034.pdf

Muningsih, E. (2022). Kombinasi Metode K-Means Dan Decision Tree Dengan Perbandingan Kriteria Dan Split Data. Jurnal Teknoinfo, 16(1), 113–118. https://doi.org/10.33365/jti.v16i1.1561

Nirla05. (2022). Mengenal Lebih Jauh Apa itu Kaggle, Fungsi Kaggle dan Manfaatnya. IDMETAFORA. https://idmetafora.com/news/read/1827/Mengenal-Lebih-Jauh-Apa-Itu-Kaggle-fungsi-Kaggle-dan-Manfaatnya.html

Pahlevi, O.-, Amrin, A.-, & Handrianto, Y.-. (2023). Implementasi Algoritma Klasifikasi Random Forest Untuk Penilaian Kelayakan Kredit. Jurnal Infortech, 5(1), 71–76. https://doi.org/10.31294/infortech.v5i1.15829

Pramakrisna, F. D., Adhinata, F. D., & Tanjung, N. A. F. (2022). Aplikasi Klasifikasi SMS Berbasis Web Menggunakan Algoritma Logistic Regression. Teknika, 11(2), 90–97. https://doi.org/10.34148/teknika.v11i2.466

Prasojo, B., & Haryatmi, E. (2021). Analisa Prediksi Kelayakan Pemberian Kredit Pinjaman dengan Metode Random Forest. Jurnal Nasional Teknologi Dan Sistem Informasi, 7(2), 79–89. https://doi.org/10.25077/teknosi.v7i2.2021.79-89

Putra, M. I. (2019). Sistem Rekomendasi Kelayakan Kredit Menggunakan Metode Random Forest pada BRI Kantor Cabang Pelaihari. Jurnal Teknik Informatika Dan Sistem Informasi, UNIVERSITAS ISLAM NEGERI SUNAN AMPEL, 13(1), 61. https://core.ac.uk/download/pdf/232849774.pdf

Rizky, M., & Andriyansyah, R. (2023). Komparasi Performa Model Terhadap Klasifikasi Sinyal Mit-Bih Arrhythmia Database (M. Y. H. Setyawan (ed.); satu). Penerbit Buku Pedia.

Setiawan, S. (2020). Membicarakan Precision, Recall, dan F1-Score. Medium. https://stevkarta.medium.com/membicarakan-precision-recall-dan-f1-score-e96d81910354

Suwati, Yesputra, R., & Sapta, A. (2022). Prediksi Kelancaran Pembayaran Angsuran Pada Koperasi Dengan Metode Naive Bayes Classifier. Indonesian Journal of Computer Science, 11(2), 635–644. https://doi.org/10.33022/ijcs.v11i2.3080

Trivusi. (2022). Data Splitting: Pengertian, Metode, dan Kegunaannya. Trivusi. https://www.trivusi.web.id/2022/08/data-splitting.html#:~:text=Data splitting atau pemisahan data,lainnya digunakan untuk melatih model

Vanessa, Y. (2021). Pelaksanan Perjanjian Finansial Thecnologi Antara Nasabah Dengan PT Home Credit Indonesia Di Kecamatan Senapelan. Uin Suska Riau. https://repository.uin-suska.ac.id/49299/2/SKRIPSI YOKO VANESSA.pdf

Downloads

Published

2023-08-14

How to Cite

Nurul Chairunnisa. (2023). Prediksi Kemampuan Pembayaran Klien Home Credit Menggunakan Model Random Forest, Decision Tree, Dan Logistic Regression. Jurnal Elektronika Dan Teknik Informatika Terapan ( JENTIK ), 1(3), 140–147. https://doi.org/10.59061/jentik.v1i3.383