Peramalan Beban Puncak Transformator dengan Metode Dekomposisi di Gardu Induk 150 KV Weleri
DOI:
https://doi.org/10.59061/jsit.v8i1.934Keywords:
Transformer, Forecasting, Peak Load, DecompositionAbstract
Electrical energy is essential for modern life, with demand increasing every year. Therefore, the development of electric power systems, including energy supply, transmission, and distribution, needs to be well planned. Transformers in substations play a vital role in converting high voltage of 150 kV to medium voltage of 20 kV to be distributed to customers. However, transformers that experience overloading can cause problems. According to the Directors' Circular Letter Number 0017.E/DIR/2014, the ideal transformer loading should be between 60% and 80%. Therefore, it is important to keep the transformer operating within safe limits to prevent disruption or damage to the electricity distribution system. One step to prevent transformer damage is to forecast peak loads in the future. There are many load forecasting methods that can be used. In this study, load forecasting was carried out using the simple linear regression method and the trend decomposition method. After the load forecasting is carried out, the accuracy of each method will be compared by calculating the MAPE value.
References
Azis, F., & Lembang, N. (2022). Studi pembebanan transformator distribusi tipe Voltra 100 kVA. Joule (Journal of Electrical Engineering), 3(2), 160–165. https://doi.org/10.61141/joule.v3i2.320
Novanda, D., & Hidayati, R. (2024). Prediction of the number of pulmonary tuberculosis disease using the moving average forecasting method and time series decomposition. Antivirus: Jurnal Ilmiah Teknik Informatika, 18(1), 37–45. https://doi.org/10.35457/antivirus.v18i1.3468
Nugraha, A. R. I., & Fauziah, D. (2023). Analisis overload transformator distribusi di gardu SKMR ULP3 Kabupaten Garut. (Tidak dipublikasikan/jurnal tidak dicantumkan, perlu dilengkapi jika ada)
Rani, H. A., & Arlianti, N. (2024). Dasar-dasar statistika dan probabilitas dalam ilmu sains (Edisi Oktober). CV Budi Utama.
Syamsir. (2018). Analisis peramalan masa pakai transformator berdasarkan beban menggunakan metode regresi linear. (Tidak dipublikasikan/jurnal tidak dicantumkan, perlu dilengkapi jika ada)
Yuni, S., Talakua, M. W., & Lesnussa, Y. A. (2015). Peramalan jumlah pengunjung perpustakaan metode dekomposisi. Jurnal Ilmu Matematika dan Terapan, 9(1), 41–50.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jurnal Sains dan Ilmu Terapan

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.














