Sistem Deteksi Hama Tanaman Bawang Merah Menggunakan Algoritma K-Means Clustering

Authors

  • Muhammad Reza Fahlevi Universitas Potensi Utama
  • Dini Ridha Dwiki Putri Universitas Potensi Utama
  • Rahmad Doni Universitas Potensi Utama
  • Elvin Syahrin Universitas Potensi Utama
  • Miftahul Mardiayah STIKes Mitra Sejati

DOI:

https://doi.org/10.59061/jentik.v3i2.1135

Keywords:

Pest Detection, Onion, K-Means Clustering, Pests, Plants

Abstract

 Farmers often have difficulty detecting pest attacks on shallots early due to limited experience and the use of manual methods that tend to be subjective. To address this issue, this study aims to develop an Android application that can detect pest attacks quickly and accurately using the K-Means Clustering algorithm. This algorithm analyzes five main plant symptoms: leaf color, leaf shape, soil moisture, leaf spots, and plant growth. The research method includes several stages, namely system requirements analysis, application design, implementation using the Java programming language and SQLite database, and testing with a black-box testing approach to ensure application functionality. In the classification process, user data is converted into numeric vectors and the distance is calculated using the Euclidean formula to three cluster centroids: Pest Free, Alert, and Pest Attacked. The application then displays the classification results directly and stores the detection history using RecyclerView. Based on manual calculations of the test data, the centroid of the “Alert” cluster shows the closest distance of 10.10 in the first iteration and gets closer to 5.05 in the second iteration after the centroid is updated. Test results show that the application can accurately classify plant conditions based on symptoms, effectively store and display detection history, and provide an easy-to-use interface that can function offline. Therefore, this application can be a useful tool for farmers in detecting pest attacks on shallots.

References

Abril, I., Maharijaya, A., & Wiyono, S. (2020). Keragaman genetik dan ketahanan terhadap penyakit layu fusarium (Fusarium oxysporum f.sp. cepae) bawang merah (Allium cepa L. var. aggregatum) Indonesia. Jurnal Hortikultura Indonesia, 11(1), 32-40. https://doi.org/10.21082/jhi.v11n1.2020.p32-40

Amrullah, R. A., Wiyono, S., Maharijaya, A., & Purwito, A. (2023). Etiologi penyakit antraknosa pada bawang merah yang disebabkan oleh Colletotrichum gloeosporioides. Jurnal Fitopatologi Indonesia, 19(5), 206-214. https://doi.org/10.14692/jfi.19.5.206-214

Buulolo, E. (2020). Data mining untuk perguruan tinggi (Edisi 1). Deepublish.

Fahlevi, M. R., & Putri, D. R. D. (2020). Aplikasi penerapan TOPSIS dalam menentukan kualitas bibit jambu madu. J-SAKTI (Jurnal Sains Komputer dan Informatika), 4(2), 569-580. https://doi.org/10.30645/jsakti.v4i2.284

Fahlevi, M. R., Putri, D. R. D., Putri, F. A., Rahman, M., Sipahutar, L., & Muhatri, M. (2020, October). Determination of rice quality using the K-means clustering method. In 2020 2nd International Conference on Cybernetics and Intelligent System (ICORIS) (pp. 1-6). IEEE. https://doi.org/10.1109/ICORIS50180.2020.9320822 https://doi.org/10.1109/ICORIS50180.2020.9320822

https://doi.org/10.33387/jiko.v3i2.1640

Miralda, V., Zarlis, M., & Irawan, E. (2020). Penerapan metode K-Means clustering untuk daging ayam buras. Build. Informatics, Technology and Science, 2(2), 91-98. https://doi.org/10.47065/bits.v2i2.493

Mustofa, Z., & Suasana, I. S. (2018). Algoritma clustering K-Medoids pada e-government bidang Information and Communication Technology dalam penentuan status EDGI. Jurnal Teknologi Informasi dan Komunikasi, 9(1), 1-10. https://doi.org/10.51903/jtikp.v9i1.162

Ong, J. O. (2013). Implementasi algoritma K-Means clustering untuk menentukan strategi marketing President University. Jurnal Ilmiah Teknik Industri, 12(Juni), 10-20.

Pamekas, T., Herison, C., & Herlinda, P. (2022). Peningkatan ketahanan bawang merah terhadap penyakit moler dengan aplikasi kultur filtrat Trichoderma. Agritrop: Jurnal Ilmu-Ilmu Pertanian, 20(1), 20-27. https://doi.org/10.32528/agritrop.v20i1.7783

Putri, D. R. D., Fahlevi, M. R., Utami, R., Nasution, F. P., Doni, R., & Sipahutar, L. (2021, September). Identification of dysmorphic body disorders using the Bayes theorem method. In 2021 9th International Conference on Cyber and IT Service Management (CITSM) (pp. 1-4). IEEE https://doi.org/10.1109/CITSM52668.2021.9588834

Rizki, M. Y., Fania, F., & Windarto, A. P. (2020). Implementasi K-Means clustering dalam mengelompokkan jumlah penjualan ikan laut di TPI menurut wilayah. JIKO (Jurnal Informatika dan Komputer), 3(2), 69-74. https://doi.org/10.31539/jiko.v3i2.1623

Rosmini, Fadlil, A., & Sunardi. (2018). Implementasi metode K-Means dalam pemetaan kelompok mahasiswa melalui data aktivitas kuliah. IT Journal Research and Development, 3(1), 1-7. https://doi.org/10.25299/itjrd.2018.vol3(1).1773

Triwidodo, H., & Tanjung, M. H. (2023). Hama penyakit utama tanaman bawang merah (Allium ascalonicum) dan tindakan pengendalian di Brebes, Jawa Tengah. Agrovigor: Jurnal Agroekoteknologi, 6(2), 67-78. https://doi.org/10.25047/agrovigor.v6i2.3265

Via Prahesta, H. R. D. (2024). Sistem deteksi penyakit pada tanaman bawang merah menggunakan convolutional neural network dengan arsitektur MobileNet. Seminar Nasional Teknologi dan Sains, 3(1), 45-52. https://proceeding.unpkediri.ac.id/index.php/senatas/article/view/3379

Zeilani, M. S. (2022). Implementasi algoritma K-Medoids dalam mengklasifikasi barang layak lelang. BEES: Bulletin of Electrical and Electronics Engineering, 2(3), 106-111. https://doi.org/10.53866/bees.v2i3.126

Downloads

Published

2025-07-28

How to Cite

Muhammad Reza Fahlevi, Dini Ridha Dwiki Putri, Rahmad Doni, Elvin Syahrin, & Miftahul Mardiayah. (2025). Sistem Deteksi Hama Tanaman Bawang Merah Menggunakan Algoritma K-Means Clustering. Jurnal Elektronika Dan Teknik Informatika Terapan ( JENTIK ), 3(2), 12–25. https://doi.org/10.59061/jentik.v3i2.1135

Similar Articles

You may also start an advanced similarity search for this article.