Aplikasi Pengenalan Kue Tradisional Bugis Menggunakan Metode Convolutional Neural Network (CNN) Berbasis Android

Authors

  • Rifaldi Rifaldi Universitas Muhammadiyah Parepare
  • Ade Hastuty Universitas Muhammadiyah Parepare
  • Ahmad Selao Universitas Muhammadiyah Parepare
  • Untung Suwardoyo Universitas Muhammadiyah Parepare
  • Masnur Masnur Universitas Muhammadiyah Parepare

DOI:

https://doi.org/10.59061/jsit.v8i2.1151

Keywords:

Android, Bugis Traditional Cake, Convolutional Neural Network (CNN), EfficientNetB0 Model, Indonesian culinary culture

Abstract

Traditional Bugis cakes are an important and distinctive part of Indonesian culinary culture, yet their existence is starting to erode due to globalization and a lack of proper digital documentation. The visual similarities between the cakes make manual identification difficult, especially for the younger generation who are more exposed to modern, global food trends. This study aims to develop an Android application for the automatic classification of traditional Bugis cakes using a Convolutional Neural Network (CNN). The experimental method was conducted by collecting a comprehensive dataset of cake images, training a CNN model, and evaluating its performance using a black box testing approach. This method was chosen because it yielded a validation accuracy of 97.00% and a final accuracy of 92.40%. The application can recognize cakes in real-time through a mobile phone camera, with optimal results achieved at a distance of 15–30 cm and under adequate lighting conditions. However, its performance decreases when the distance increases, objects are cut off, or lighting is poor. 

References

Alda, M., Rince, L., Ritonga, P., Rahmah, A. S., Dio, M., & Panjaitan, A. (2025). Rancang bangun aplikasi rental mobil berbasis Android. Jurnal Mahasiswa Teknik Informatika, 9(2).

Alim Murtopo, A., Aditdya, M., Septiana Ananda, P., & Gunawan, G. (2024). Penerapan computer vision untuk mendeteksi kelengkapan atribut siswa menggunakan metode CNN. Jurnal PROSISKO, 11(2). https://doi.org/10.30656/prosisko.v11i2.8752

Anardani, S., & Putera, A. R. (2019). Analisis pengujian sistem informasi website e-commerce Manies Group menggunakan metode blackbox function. Eminar Nasional Hasil Penelitian Dan Pengabdian Kepada Masyarakat UNIPMA. https://prosiding.unipma.ac.id/index.php/SNHP/article/view/768/0

Anisa, D. A., & Sartika, N. (2022). Pengenalan kue basah tradisional suku Bugis berbungkus daun pisang sebagai sajian kebudayaan Kabupaten Soppeng Sulawesi Selatan. Hospitality and Gastronomy Research Journal, 4(1). https://journal.politeknikbosowa.ac.id/HOME/article/view/212

Hasnawati, & Asriadi. (2022). Aplikasi game memasak kue tradisional Bugis menggunakan Construct 2 berbasis Android. Jurnal Sintks Logika, 2(2). https://doi.org/10.31850/jsilog.v2i2.1113

Iqbal Burhanuddin, M., Syaifullah, A., Adeka Putra Jaya, S., & Gabriel Somoal. (2025). Analisis komparatif model MobileNetV1 dan EfficientNetB0 dalam klasifikasi citra empat musim menggunakan transfer learning. Rumah Jurnal Jekin, 5(2). https://doi.org/10.58794/jekin.v5i2.1378

Kurniawan, T. A. (2018). Pemodelan use case (UML) evaluasi terhadap beberapa kesalahan dalam praktik. Jurnal Teknologi Informasi Dan Ilmu Komputer, 5(1), 77–86. https://doi.org/10.25126/jtiik.201851610

Muzarafah, M., & Marlina, M. (2022). Penerapan metode fuzzy Mamdani dalam diagnosa virus penyebab penyakit pada kucing. Jurnal Sintaks Logika, 2(3). https://doi.org/10.31850/jsilog.v2i3.1848

Ni Wayan Jantin, Ni Made Meisa Priyanti, Ni Kadek Dwi Juniari, & Dr. Gde Bayu Surya Parwita, SE., MM. (2022). Upaya melestarikan budaya globalisasi generasi Z tradisional dalam transisi di era society 5.0. Pilar. https://e-journal.unmas.ac.id/index.php/pilar/article/view/4460/3451

Putri, K. A., Rasyiffah, Z. T., Najah, F. L., Aulia, K., Satria, A., Dharmawan, S. A., & Fitria, R. (2025). Wawasan nusantara dalam pengembangan pangan lokal: Menjaga identitas kuliner daerah. Jurnal Pertanian, Peternakan, Perikanan, 4(2). https://doi.org/10.3766/hibrida.v.1i2.3753

Richo. (2023). Analisis performa berbagai arsitektur Convolutional Neural Network (CNN) terhadap ketepatan deteksi cacat pada kemasan snack box. Journal of Advances in Information and Industrial Technology, 5(1), 31–42. https://doi.org/10.52435/jaiit.v5i1.377

Sutrisno, J., & Karnadi, V. (2021). Aplikasi pendukung pembelajaran bahasa Inggris menggunakan media lagu berbasis Android. Jurnal COMASIE, 04(06). https://ejournal.upbatam.ac.id/index.php/comasiejournal/article/view/3549

Syarif, M., & Nugraha, W. (2020). Pemodelan diagram UML sistem pembayaran tunai pada transaksi e-commerce. Jurnal Teknik Informatika Kaputama (JTIK), 4(1).

Downloads

Published

2025-10-25

How to Cite

Rifaldi Rifaldi, Ade Hastuty, Ahmad Selao, Untung Suwardoyo, & Masnur Masnur. (2025). Aplikasi Pengenalan Kue Tradisional Bugis Menggunakan Metode Convolutional Neural Network (CNN) Berbasis Android. Jurnal Sains Dan Ilmu Terapan, 8(2), 197–211. https://doi.org/10.59061/jsit.v8i2.1151

Most read articles by the same author(s)