Prediksi Nilai Akhir Semester Siswa Menggunakan Algoritma Random Forest
DOI:
https://doi.org/10.59061/jsit.v7i2.918Keywords:
Final grade prediction, Random forest algorithm, Learning evaluationAbstract
Students' end-of-semester grades show the results of the learning process that has been carried out for 1 semester, therefore accurate evaluation is very important to determine the extent to which learning objectives have been achieved properly. This research aims to create an appropriate prediction model to project students' final semester grades before the assessment period so that it can help teachers to identify at-risk students and provide appropriate treatment. This research uses the random forest algorithm and uses a dataset of student grades. The Random Forest model was successfully obtained through training and model evaluation using test data, showing an accuracy of 93.33%. The use of the random forest algorithm to predict students' final semester grades can be the right way to produce high accuracy for the benefit of educators in handling their students.
References
Bunda, A. P., & Junaidi, J. (2021). Penyebab rendahnya hasil belajar peserta didik kelas X IIS mata pelajaran sosiologi semester ganjil tahun ajaran 2020/2021 di SMAN 10 Padang. Jurnal Kajian Pendidikan Dan Pembelajaran, 2(4), 297–306.
Ihzaniah, L. S., Setiawan, A., Wijaya, R. W. N., Matematika, P. S., Kristen, U., Wacana, S., Tengah, J., & Berganda, R. L. (2023). Jambura Journal of Probability and Statistics, 4(1), 17–29.
Liu, Y., Wang, Y., & Zhang, J. (2012). New machine learning algorithm: Random forest. In Lecture Notes in Computer Science (Vol. 7473, pp. 246–252). Springer. https://doi.org/10.1007/978-3-642-34062-8_32
Nalatissifa, H., Gata, W., Diantika, S., & Nisa, K. (2021). Perbandingan kinerja algoritma klasifikasi Naive Bayes, Support Vector Machine (SVM), dan Random Forest untuk prediksi ketidakhadiran di tempat kerja. Jurnal Informatika Universitas Pamulang, 5(4), 578. https://doi.org/10.32493/informatika.v5i4.7575
Pekuwali, A. A. (2020). Prediction of student learning outcomes using the Naive Bayesian Algorithm (Case Study of Tama Jagakarsa University). IOP Conference Series: Materials Science and Engineering, 823(1). https://doi.org/10.1088/1757-899X/823/1/012056
Putri, C. (2020). Implementasi Artificial Intelligence untuk memprediksi harga penjualan rumah menggunakan metode Random Forest dan Flask. UII.Ac.Id, 1–101.
Ramadhani, A. N., Ardiansyah, R. G., & Latifah, U. (2022). Penilaian alat hasil belajar untuk siswa sekolah dasar SDN Sindangsari 1 Desa Sindangsari. Alsys, 2(2), 292–302. https://doi.org/10.58578/alsys.v2i2.303
Sulistyawan, M. R., Studi, P., Informatika, T., & Teknik, F. (2021). Pemodelan prediksi tingkat kelulusan mahasiswa dengan pendekatan algoritma naïve bayes. Jurnal Informatika, 405–414.
Wijayaningrum, V. N., Putri, I. K., Kirana, A. P., Mubarok, M. R., Harahap, D. M., & Hamesha, B. R. (2023). Analisis performa seleksi atribut untuk menentukan potensi mahasiswa putus studi. Jurnal Informatika Polinema, 9(2), 237–244. https://doi.org/10.33795/jip.v9i2.1300
Winantu, A., & Khatimah, C. (2023). Perbandingan metode klasifikasi Naive Bayes dan K-Nearest Neighbor dalam memprediksi prestasi siswa. INTEK: Jurnal Informatika Dan Teknologi Informasi, 6(1), 58–64. https://doi.org/10.37729/intek.v6i1.3006
Yoga Siswa, T. A. (2023). Komparasi optimasi Chi-Square, CFS, Information Gain dan ANOVA dalam evaluasi peningkatan akurasi algoritma klasifikasi data performa akademik mahasiswa. Informatika Mulawarman: Jurnal Ilmiah Ilmu Komputer, 18(1), 62. https://doi.org/10.30872/jim.v18i1.11330
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jurnal Sains dan Ilmu Terapan

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.