Analisis Sentimen Implementasi Kurikulum Merdeka Tingkat SMP Di Kabupaten Ciamis Menggunakan Algoritma Naïve Bayes
DOI:
https://doi.org/10.59061/jentik.v2i1.625Keywords:
Merdeka Curiculum, Sentiment Analysis, Naïve BayesAbstract
One of the important steps in the improvement of the education system in Indonesia is the introduction and implementation of the Merdeka Curriculum which is designed to provide greater flexibility in curriculum development at the Primary and Secondary levels leading to increased student participation in learning according to their respective interests and talents. The method used in this research is text-based sentiment analysis using the Naïve Bayes algorithm to classify positive and negative sentiments. The data used are student responses to the implementation of the Merdeka Curriculum collected through a survey with 507 data collected and analyzed using the Naïve Bayes algorithm with an accuracy rate of 82%. The results of this sentiment analysis will provide recommendations that may be implemented as a follow-up regarding the sentiment analysis of the Merdeka Curriculum.
References
https://kurikulum.kemdikbud.go.id
Miladiah, S. S. (2023, Januari). Analisis Penerapan Kurikulum Merdeka Di SMP Bina Taruna Kabupaten Bandung. Jurnal Ilmiah Mandala Education (JIME), 9
Anggara, A. (Ed.). (2023). Penerapan Kurikulum Merdeka Belajar pada Satuan Pendidikan Jenjang SMP. Jurnal Pendidikan dan Konseling, 5.
Arintowati, F. N. (Juni 2022, Juni). PENANDA TANGGAPAN POSITIF DAN NEGATIF DALAM AKUN INSTAGRAM @nadiemmakarim. PRASI, VOL. 17.
Cholilah, M. (2023). Pengembangan Kurikulum Merdeka Dalam Satuan Pendidikan Serta Implementasi Kurikulum Merdeka Pada Pembelajaran Abad 21. Sanskara Pendidikan dan Pengajaran.
P. Studi, T. Informatika, F. I. Komputer, and U. B. Jaya, “Perbandingan Kinerja Variasi Naive Bayes Multivariate Bernoulli dan Naive Bayes Multinomial dalam Pengklasifikasian,” vol. 2, pp. 108–125, 2020.
Ainia, D. K. (2020). “Merdeka Belajar Dalam Pandangan Ki Hadjar Dewantara Dan Relevansinya Bagi Pengembangan Pendidikan Karakter.” Jurnal Filsafat Indonesia, 3(3), 95–101.
F. Reviantika et al., “Analisis Klasifikasi SMS Spam Menggunakan Logistic Regression,” vol. 04, no. 03, pp. 155–160, 2021.
B. Lampung, “DATA TWITTER KOMISI PEMBERANTASAN KORUPSI REPUBLIK INDONESIA,” vol. 7, no. 1, pp. 1–11, 2020.
M. Y. H. Setyawan, R. M. Awangga, and S. R. Efendi, “Comparison Of Multinomial Naive Bayes Algorithm And Logistic Regression For Intent Classification In Chatbot,” Proc. 2018 Int. Conf. Appl. Eng. ICAE 2018, no. October, pp. 1–5, 2018, doi: 10.1109/INCAE.2018.8579372.
Rozaq, A. (2022, April ). Analisis Sentimen Terhadap Implementasi Program Merdeka Belajar Kampus Merdeka Menggunakan Naïve Bayes, K-Nearest Neighboars Dan Decision Tree. JURNAL MEDIA INFORMATIKA BUDIDARMA, 6, 2.
Arintowati, F. N. (Juni 2022, Juni). Penanda Tanggapan Positif Dan Negatif Dalam Akun Instagram @nadiemmakarim. PRASI, VOL. 17.
Yuyun. (n.d.). Algoritma Multinomial Naïve Bayes Untuk Klasifikasi Sentimen Pemerintah Terhadap Penanganan Covid-19 Menggunakan Data Twitter. JURNAL RESTI, vol.5 no 4.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Jurnal Elektronika dan Teknik Informatika Terapan
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.